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ABSTRACT: We consider topological twisting of recently constructed Chern-Simons-matter
theories in three dimensions with N' = 4 or higher supersymmetry. We enumerate phys-
ically inequivalent twistings for each A/, and find two different twistings for N’ = 4, one
for NV = 5,6, and four for ' = 8. We construct the two types of N' = 4 topological
theories, which we call A/B-models, in full detail. The A-model has been recently studied
by Kapustin and Saulina. The B-model is new and it consists solely of a Chern-Simons
term of a complex gauge field up to BRST-exact terms. We also compare the new theories
with topological Yang-Mills theories and find some interesting connections. In particu-
lar, the A-model seems to offer a new perspective on Casson invariant and its relation to
Rozansky-Witten theory.
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1 Introduction

For the past two years, a large class of new Chern-Simons-matter theories has been dis-
covered. Since the seminal work of Bagger and Lambert [1] and Gustavsson[2] (BLG),
where a theory with maximal AV = 8 was first constructed, the list of supersymmetric
Chern-Simons theories has expanded quickly.

Gaiotto and Witten [3] (GW) gave a general prescription for coupling Chern-Simons
theory to hyper-multiplets, allowing for construction of a large class of new theories at
once. It was soon augmented [4] by adding twisted hyper-multiplets, so that all NV > 4
theories can be understood in a unified way in the GW framework.!

The scalar fields of A/ = 4 theories can describe a sigma model with a hyper-Kahler
target space. The N > 5 theories have much less freedom for their target spaces: flat
spaces and their orbifolds. An exhaustive list of ' > 5 theories can be found in [9-11].

The main goal of this paper is to study topological field theories obtained by twisting
the new Chern-Simons-matter theories. There are two well-known topological theories in

We will focus exclusively on N’ > 4 theories. See, for instance, some early works [5-7] and a recent
review [8] for A/ < 3 theories.



N =4 (hyper-multiplet only) A/B
N =4 (hyper + twisted hyper), 5,6 AB
N =38 AB/C/D/E

Table 1. Topological twistings of AV > 4 Chern-Simons-matter theories.

three dimensions: pure Chern-Simons theory [12] and Rozansky-Witten theory [13]. The
latter is a twisted version of N' = 4 sigma model without gauge symmetry. Clearly, topo-
logical twisting of Chern-Simons-matter theories would lead to a mixture of pure Chern-
Simons and Rozansky-Witten theories. It is conceivable that the mixed theory may shed
light on relations between the two seemingly different theories. In this paper, we take a
first step toward understanding the new topological theories.

In section 2, we begin by writing down the physical N’ = 4 theories in full generality.
It was already done in [9] for flat target space. For non-linear hyper-Kéhler target spaces,
the recipe was given in [3], but the explicit form of the Lagrangian and supersymmetry
transformation rules were not available in the literature.

We then proceed to topological twisting in section 3. First, we enumerate all possible
inequivalent twistings for A/ > 4 theories,? summarized in table 1.

For N = 4 theories with SO(4) ~ SU(2);, x SU(2)r R-symmetry, we can use either
of the two SU(2) factors for twisting with the Lorentz group SU(2)r. When the N' = 4
theory contains hyper-multiplets but no twisted hyper-multiplets, the two choices lead to
different topological theories, which we call A and B models. The distinction disappears
when the theory contains both types of hyper-multiplets, which is automatically true of
N = 5,6 theories. We call the result AB-model. For A/ = 8 theories, the triality of SO(8)
offers three new possibilities aside from the AB-model, which we call C/D/E models. The
C-twisting of the BLG theory has been considered in [14], while the A-model has been
studied in a recent paper [15] which have some overlap with the current work.

In the remainder of section 3, we explicitly construct the A/B/AB-models in the
N = 4 notation and study their properties. The scalar super-charges of the A-model are
nilpotent up to a gauge transformation, while nilpotency in the B-model holds up to the
equations of motion for the fermions. A BRST gauge fixing and introduction of auxiliary
fields renders the super-charges fully nilpotent. Topological invariance of the resulting
Lagrangian is verified in the usual manner by splitting the Lagrangian into a manifestly
metric-independent part and a (Q-exact part.

In section 4, we take a preliminary step toward the computation of topological invari-
ants from the new theories. Inspired by the Mukhi-Papageorgakis (MP) map [16] relating
Chern-Simons and Yang-Mills theories, we compare our new theories with more well-known
topological theories in the literature, and argue that the linear A-model with gauge group
SU(2) x SU(2) should capture the Casson invariant. The MP map also suggests that
A-model is naturally related to the Rozansky-Witten theory [13] as well. We also specu-

2Note that N = 4 is the minimal number of supersymmetry for twisting. The N = 3 case is excluded
because the supercharges form a triplet under the SO(3) R-symmetry and a doublet under the Lorentz
symmetry, so that none of the supercharges become scalar under the twisted Lorentz symmetry.



late briefly on how the A and B-models may make contact with the pure Chern-Simons
theory [12].

2 Chern-Simons sigma model

In this section, we write down the most general form of Chern-Simons sigma model in
(2+1) dimensions. We first review the linear model constructed in [3] and extended in [4].
Then we write down the non-linear model following the prescription given in [3]. We will
mostly follow notations of [4], except for an overall rescaling of matter fields.

2.1 Linear model

We start with an Sp(2n) group and let A, B indices run over a 2n-dimensional represen-
tation. We denote the anti-symmetric invariant tensor of Sp(2n) by wap and choose all
the generators tAB to be anti-Hermitian (2n X 2n) matrices, such that typ = w ACtCB are
symmetric matrices. We consider a Chern-Simons gauge theory whose gauge group is a
subgroup of Sp(2n) and we denote the anti-Hermitian generators of the gauge group by

(t™)4; which satisfy the commutation relations,
[t "] = [P (2.1)

Gauge fields are denoted by (A,,), and the adjoint indices are raised or lowered by an
invariant quadratic form k™" or its inverse k,,, of the gauge group.

We couple the gauge theory with a hyper-multiplet matter fields (qé,wg‘) satisfying
the reality condition

(42)" = Pwapaf,  (8) = Pwappf. (22)

We use (a, §; ¢, ) doublet indices for the SU(2);, x SU(2)g R-symmetry group.
The necessary and sufficient condition for N' = 4 supersymmetry [3] is that ¢’} satisfy

the “fundamental identity”,
kmnt?}thg')D =0, (2.3)

where the indices A, B, C' are symmetrized over cyclic permutations. This identity can be
understood [3] as the Jacobi identity for three fermionic generators of a Lie super-algebra,

[M™, M"] = [ MP, [M™,Qal = Qp(t™)"%,  {Qa,QB} = th5Mp. (2.4)

This turns out to be a rather strong constraint on the field content of the theory. Namely,
the gauge group and the matter content should be such that the gauge symmetry alge-
bra can be extended to a Lie super-algebra by adding fermionic generators in one-to-one
correspondence with hyper-multiplets.

To write down the Lagrangian in a manifestly N = 4 covariant form, it is useful to

introduce the “moment map” multiplet,

Has = URpaads . Gy =tRsaavy . Pl = thpvivl . (2.5)



As for the Chern-Simons term in the Lagrangian, we use the notation
1
Lcog(A) = e (kmnAzbayAK + gfmnpATAﬁA§> (2.6)

As our discussion in this paper will be mostly classical, we will suppress an overall coefficient
of the Lagrangian, which should satisfy an integrality condition to make the quantum theory
well-defined.

Collecting all notations, we can summarize the Lagrangian of the Gaiotto-Witten
model,

£ = Les(A) +wan (~eDalDaf +ie i puf)
€O T Frang 1)) (1) (2.7)
and its supersymmetry transformation rules
Ogo = iV, DAL = in" vt
o = | D+ G )% (28)

The supersymmetry parameter 1 transforms in the (2, 2) representation of SU(2);, xSU(2)g
and satisfies the reality condition®

(nad)* = _Eaﬁedgnﬁﬁ- (2.9)

To obtain the most general N/ = 4 Chern-Simons (linear) sigma model, one should
add twisted hyper-multiplets (g4, ) to the Gaiotto-Witten model [4]. The gauge gener-
ators fTB also satisfy the fundamental identity (2.3) and define the twisted moment map
multiplet similar to (2.5). It is also useful to introduce yet another notation,

Pt = Pt apgltaf . B = P (M) Aqu‘qg. (2.10)
The full Lagrangian is given by
£ = Los(A)twap (—? Dl Daf+ic 6 ol ) +wap (~e* D DGl +ie L pif)

—ikmn (eaﬁ ¥ ym jgg +eif ewjgfng s H4e” e ]Z;jgﬂ/ —e7ef 5ﬂm6-[)n ;—e 566#27;3575 )

ay apl 5o
(7YY () G G (7))
_%ﬁmn(ﬂm)aﬁ(ﬂn)ﬁa - %an(ﬁm)dg(ﬂn)ﬁd . (2'11)

The supersymmetry transformation rules read
5q = in, 08, 0GE =in“sl . GAT =iy, (il + i)
1 .
A A A A ~
0 = [lﬂqa + 5 (tn) 505 (M’”)ﬁa} 0% = (tm) 5af (8™ 5

00 = i+ G B = St a2)

3In [9], the same reality condition was stated with a wrong sign.



Mass deformation. The N = 4 superconformal Chern-Simons theories allow a mass-
deformation which preserves all of the Poincaré supersymmetry [4] (See also [9, 17, 18]).
For the Gaiotto-Witten model, the deformation amounts to adding the mass terms and a

quartic interaction term to the Lagrangian,

o 2
Limass = —waBkmn (mQEOCBQng + Zmeaﬁiﬁéib?) - gm kmn(ﬂm)a,@(un)ﬁa : (213)

One show that the mass-deformed Lagrangian still preserves the N/ = 4 supersymmetry,
provided that the supersymmetry transformation rule for the fermion is also modified by
an additional term,

6rnasslz)ég'4 - mQ£77ad . (214)
The deformed supersymmetry algebra contains a non-central extension,
{Qad7 Qﬁﬁ} — ('}’Mﬁ_l)PMeaﬁﬁdB 4 6_12m (eaﬁRézB o EdBRaﬁ) 7 (215)

where R®| R denote the generators of SU(2)r, x SU(2)g.

It follows from (2.15) that for the mass deformation of the general theory with both
types of hyper-multiplets, the mass parameters of the hyper- and twisted hyper-multiplets
should be equal. The mass-deformed term in the Lagrangian of the general theory turns

out to be the sum of the contributions from the two types of multiplets.

Liass = —WAB (mQEaﬁqzj(]l])B + mQEdﬁéiquB'B + imedﬁwé¢§ - imeaﬁi)é&ﬁB)

2

=2 K (B (47)7 = () 15" (2.16)

The supersymmetry transformation rules for fermion fields are again modified as
5mass¢&'4 = mqg???aa ) 5111&881;&4 - mq~£na(i : (217)

2.2 Non-linear model

The linear sigma model explained above can be generalized to a non-linear model [3] whose
target space is a hyper-Kéhler manifold X. The scalar fields are now local coordinates ¢* on
X (i=1,--+,4n = dimX). We begin this subsection with a brief review of hyper-Ké&hler
geometry, closely following [13], and move on to describe the sigma model as explained in [3].

Hyper-Kéahler geometry. The hyper-Kéhler structure of X can be described by the
existence of anti-symmetric inner products wap and €,3, which leads to three symplectic
forms

Qs = WABEay €35 e NP0 (2.18)
We introduced the hyper-Kahler vielbein satisfying

e = et de + T NP =0, (2.19)



where T4 = T;4pdq’ is the metric connection in the Sp(2n) holonomy group. The

curvature tensor is given by
1 4 .
RAB = dFAB + FAC AN FCB = §RABijqu AN dqj . (2.20)
The hyper-Kéhler structure and the identity R;jjz; = 0 further implies that

1
Rap = §QABCD€76607 VAN 6D5 s (2.21)

where Qapcp is totally symmetric.

Target space isometry. Consider a set of Killing vectors {V"} on X satisfying the
Lie(-bracket) algebra,

V™ Ve = fmve. (2.22)

On a Kéhler manifold, a Killing vector preserving the complex structure satisfies V;V; =0
and V;V; = —V ;V;, where (I, J; I, J) are holomorphic and anti-holomorphic indices. The
corresponding statement in the hyper-Kéhler case is that {V"™} preserving all three complex

structures should satisfy
VaaVEs = thgeap, (2.23)

for some symmetric tensor fields ¢")'5.
On any Riemannian manifold, the Killing equation and R;[;z;) = 0 imply

Vi (ViVi) = VI Rjij - (2.24)
The hyper-Kahler version of the identity can be written as
Vit™Ap = —Ri; p(V™Y. (2.25)
Differentiating (2.22) and using (2.25), we find
[t "4 = () s + R g (V™) H(V) (2.26)
The moment maps are defined by
d (1pg) = ivm (Qap) - (2.27)

In general, there are undetermined additive constants in y, which corresponds to the pos-
sibility of adding Fayet-Iliopoulos D-terms for U(1) gauge fields. It is useful to note that
one can integrate (2.22) and use (2.27) to obtain

—wap(V™) (VM) E) = ivmdulis = [ puil 5 (2.28)
The other two components of the moment map multiplet can be defined by

= Vil = tRsvavs (2.29)



In terms of pys, the fundamental identity for the non-linear model can be written as

Bt ifsshls) = 0. (2:30)

In the non-conformal cases, a weaker condition, which is a second descendant of the fun-
damental identity, is sufficient to ensure N/ = 4 supersymmetry,

Fonn (a0 + il + J75) = 0. (231)
Gauging the isometry. The target space isometry can be gauged by imposing the
following transformation rules on the fields:

oaq" = A (V™)' (2.32)
St = —An (™) App? = Ay [(™) A + (V)T ] 98, (2.33)
INAm)uy = Dyl = 0uhy + [P (An) u\p - (2.34)
The covariant derivatives for the matter fields are defined by
Duqi = 8uqi - (Am)u(vm)i ) (2.35)
Dyt = 9,0 + 0,4 Ti Y + (An) (™) p0o”
= 0,0 + Dug'TA pP 4+ (An) W (F™) A 508 (2.36)

They transform homogeneously under the gauge symmetry,
0a (Dpg') = And; (V"' Dug? . Oa (Dpp?) = = A (i™) A g . (2.37)
The moment map multiplet also transforms as expected,
on (1t diss o) = ="y (D038 P1) - (2.38)
To verify (2.37) and (2.38), one needs to use the identities (2.25), (2.26) and (2.28).

Adding twisted hypers. To obtain the most general model, one should also add twisted
hyper-multiplets. One simply introduces another target space X for the twisted hypers and
define the corresponding moment map multiplet and so on. One also defines

pm = =gy (VI = =g (V) (VT (2.39)
The minus sign is required for (2.39) to reduce to (2.10) in the linear case.

Lagrangian and supersymmetry. Using the notations introduced so far, we can write
down the Lagrangian for the most general Chern-Simons gauged non-linear sigma model:

L = Los(A)
twap (~e"DgiDaf + iyt puL) + Gap (—< DA DT + i il pf)

—ikmn ( 66”5]%7 Bty J" +4eMe 65]”%]” —eYe ﬁéﬂmﬁp"(g—e K 65%5%5)

1 : : :
= B (B ) () G ) 7))
1 1 :
™ ) 1) = G i)y ()
+éQABCD(¢aA¢B )@ vy )T 4 éﬁABcp(%zZ?E)(@%(?)eme&- (2.40)



The supersymmetry transformation rules read

(0ng)* = in®d,  (0,0) = "%, S, AT = i, (i + i)

S = = [0 + O )] ot = (VY Gy~ T O
0 = = | @D+ T )] o = (T = (005
(2.41)

Here, we used some short-hand notations such as Dg® = ef‘O‘in and (5nq)A0‘ = ef‘a (5nq)i.
The parameter 7 satisfies the reality condition

(n*4)* = —{—eaﬁedgnﬁﬁ. (2.42)

Mass deformation. Unlike the linear model of the previous subsection, the non-linear
model does not admit a mass deformation. For the linear model, the SU(2);, x SU(2)r R-
symmetry acts on a target space as a tri-holomorphic Killing vector. The mass deformed
Lagrangian (2.13) and supersymmetry algebra (2.15) can be associated to this Killing
vector in a standard way [19]. In the non-linear model, however, the R-symmetry is no
longer an isometry of the target space, so the mass deformation is not allowed.

Examples. Gaiotto-Witten [3] gave a classification of linear model in terms of Lie super-
algebra; see (2.4). The same classification can be used even after adding twisted hypers, and
the resulting theory is typically a linear quiver with product gauge group and alternating
series of hypers and twisted hypers [4].

Such a classification for non-linear model is not known, but a method for generating
non-linear models from linear models was given in [3]. The idea is to use a linear quiver
allowed by the Lie super-algebra conditions. The linear quiver has two open ends. The
non-linear model is obtained by taking the usual hyper-Kéler quotient [20, 21] with all the
gauge groups except those at the end points.

Another class of non-linear models was given by Kapustin-Saulina [15]. The gauge
group G is any compact simple Lie group and the target space is the cotangent bundle of
the flag manifold, 7%(G/T"), where T" is the maximal torus of G.

We do not have any new example to offer here. Instead, as an illustration, we present
the simplest example T%(SU(2)/U(1)) = T*(CP!) from Kapustin-Saulina [15] in our nota-
tion. This space is endowed with the famous Eguchi-Hanson metric [22],

2
ast = 120t + ot v ad ) (= V=), (2.43)

where o, are left-invariant one-forms on S® satisfying do; = o9 A 03, etc. Explicitly, in the
Euler-angle coordinate,

01 = +siny df + cossinf do,

09 = —cosdf + sinysinf do ,
o3 = dip — cosOdgp, (2.44)



The vielbeins are written in terms of the invariant one-forms as

1 1 1
e = f_ldr, el = 57“01, e? = 57“02, e = §7°f03, ede — (eO]I + ie“T“)AO‘, (2.45)

where 7% are the Pauli matrices. The three symplectic forms are given by
a 0 a 1 abc b c
Qag = Qa(e7%)ap, Qa=e€ Ne —|—§e e’ Ne‘. (2.46)
The gauge group G = SU(2) acts on the target space as isometries V" leaving o, invariant,

V= +sin ¢ 0y + cot 0 cos ¢ Oy + cscf cos ¢ Oy, ,
V? = —c0s ¢ Jp + cot 0sin ¢ Iy + cscOsin g dy,
V3= -0y, (2.47)

The moment maps can be computed by solving (2.27): iymQ, = dup'. Checking the
fundamental identity, we find

-1 0 0
Emnpt™ o™y = 0 r-10 : (2.48)
0 0o

ab

Removing the trace part, we see that the strong version of fundamental identity (2.30) does
not hold. However, since the discrepancy is a constant, the weaker version (2.31) holds and
the theory is well-defined.

All known examples so far, those of Gaiotto-Witten [3] and of Kapustin-Saulina [15]
are non-compact. It is not clear (to us) whether there exists any compact hyper-Kéhler
manifold satisfying either the strong or the weak version of fundamental identity.

3 Topological twisting

3.1 Survey of possible twistings

Before performing the topological twisting of the Chern-Simons sigma model described in
the last section, we pause to enumerate physically inequivalent twistings for N' = 4,5,6,8
theories. A similar discussion is well-known in four dimensions, where there is only one
twisting for NV = 2 super-Yang-Mills [23] and three different twistings for N/ = 4 super-
Yang-Mills [24-26].*

N = 4 . The supercharges transform in the (2,2) representation under the SO(4) ~
SU(2)r, x SU(2)r R-symmetry group. Recall also how the matter fields behave under the
R-symmetry:

q:(2,1), v:(1,2), ¢:(1,2), ¢:(2,1). (3.1)

4We will not consider the possibility of including conformal supercharges in twisting [27].




Consider a theory with hyper-multiplets (q,) only. Twisting with SU(2)g gives scalar
supercharges in doublet of SU(2); and matter fields transforming in SU(2);, x SU(2)g
(SU(2)gr = diag [SU(2)g x SU(2)R]) as

q:(2,1), o:(1,1)®(1,3). (3.2)

We will call this “A-twisting.” Switching the roles of SU(2), and SU(2)g leads to a different
twisting, which we call “B-twisting.” Equivalently, we can continue to use SU(2)g for
twisting and consider a theory with twisted hyper-multiplets only. In the latter convention,
the resulting theory contains matter fields transforming in SU(2);, x SU(2)g as

qg:(1,2), ¥:(2,2). (3.3)

We will continue to use SU(2)g for twisting even when both types of hyper-multiplets
are present; the other twisting amounts to exchanging the roles of hyper and twisted hyper-
multiplets. We will call this broader class of theories “AB-models”, to distinguish them
from the two extreme cases. In general, N' = 4 theories are not symmetric under the
“mirror reflection” between hyper and twisted hyper-multiplets, while A/ > 4 theories are
automatically symmetric.

N = 5. The supercharges transform as vector 5 under the SO(5) R-symmetry group,
which have the following decomposition:
case 1 : SO(5)
case 2 : SO(5)

— S ~ SU(2)1 X SU(2)2,

— SO(3) x SO(2) ~ SU(2)3 x U(1).

The case 1 is the same as the AB-twisting of A/ = 4 theories. In the case 2, the supercharges
transform as 3o @ 1+ @ 1_ and do not yield any scalar supercharge upon twisting.

N = 6 . The supercharges transform as vector 6 under the SO(6) R-symmetry group,
which have the following decomposition:

case 1 : SO(6)
case 2 : SO(6)

The case 1 can be regarded as a refinement of the AB-twisting of A/ = 4 theories in the
sense that there is a left-over U(1) R-symmetry group. The scalar supercharge is neutral
under this U(1), but the theory contains charged matter fields. The case 2 can be regarded
as a refinement of the case 2 of N’ = 5 theories considered above. Again, we find that there
is no possible twisting to have scalar supercharges.

N =8 . The N = 8 BLG theories have the R-symmetry group SO(8). If we keep the
supercharges in the vector 8, representation, we will only obtain refinements of the AB-
twisting of N/ = 4 theories. New possibilities may arise if we use the triality of SO(8) to
let the supercharges transform in the spinor 8, representation.

,10,



Consider the following decompositions:

case 1 : SO(8) — SO(2) x SO(6) — SO(2) x SO(3) x SO(3) ~ U(1) x SU(2)5 x SU(2)4
case 2 : SO(8) — SO(2) x SO(6) — SO(2)? x SO(4) ~ U(1)? x SU(2); x SU(2)2

case 3 : SO(8) — SO(3) x SO(5) ~ SU(2)4 x USp(4)

case 4 : SO(8) — SO(4) x SO(4) ~ SU(2), x SU(2), x SU(2). x SU(2)4

Notice that the cases 1 and 2 can be enhanced to the cases 3 and 4, respectively. So, it is
sufficient to examine the latter two cases.

Under the subgroups of case 3, the supercharges transform as (2,4). It appears that
we have one possible twisting with four scalar-supercharges in the 4 representation of
SO(5) ~ USp(4). However, there is a slight subtlety here. Since the triality of SO(S)
is broken in the decomposition, we have two choices for the representation of the matter
fields, which leads to two inequivalent twistings. Denoting the scalar and fermion fields by
® and ¥ and specifying how the representations of the SU(2)r x SU(2)4 x USp(4) before
the twisting reduces to those of the SU(2) g x USp(4) after twisting, we find

o C-twisting:
®:(1;3,1)®(1;1,5) — (3;1)®(1,5),
U:(2;2,4)0 — (3;4) @ (1;4).

e D-twisting :

:(1;2,4) — (2:4),
:(2;3,1)® (2;1,5) — (4;1) @ (2;1) @ (2;5).

S

In the case 4, the triality of SO(8) survives as permutations of the four SU(2) factors;
8., 85 and 8, are all related by permutations. We can see it from the following assignment
for the supercharges and matter fields,

Q:(2,1,21)®(1,2,1,2),

®:(2,2,1,1)®(1,1,2,2),

v:(2,1,1,2)9(1,2,2,1) . (3.4)
There is a novelty here. Unlike all other cases considered so far, we can now use more than

one SU(2) factors for twisting. Up to permutations, we have four candidates for different
twistings.

e AB, further refined: diag[SU(2)r x SU(2),] x SU(2)p x SU(2). x SU(2)4,

Q:(1;1,2,1),
®:(2:2,1,1) @ (1;1,2,2),
T:(3:1,1,2) 6 (1;1,1,2) & (2;2,2,1) . (3.5)



o C’-twisting: SU(2)p = diag[SU(2)p x SU(2), x SU(2)] x SU(2). x SU(2)q,

Q:(1,2,1)8(1;1,2),
®:(3;1,1)®(1;1,1)
U (3;1,2)®(1;1,2)

®(1;2,2),
& (3;2,1) @ (1;2,1) . (3.6)
e D’-twisting: SU(2)p = diag[SU(2)g x SU(2), x SU(2)4] x SU(2), x SU(2)e,

Q:(11,2)®(1;2,1),
D (2;2,1)9(2;1,2),
U:(4;1,1)®(2;1,1) @ (2;1,1) ® (2;2,2) . (3.7)

e E-twisting: SU(2)g = diag[SU(2)g x SU(2), x SU(2), x SU(2).] x SU(2)4,

1 (1;2)

?

b

(L;1) & (2:2),
H(352)@(Li2)@ (41) @ (1)@ (2;1) . (3.8)

o O

Note that the C’ and D’ twistings are not really new as they can be obtained from the C
and D twistings, respectively, by breaking USp(4) down to SU(2) x SU(2).

The C-twisting of the BLG theory has been studied in [14]. In the rest of this sec-
tion, we will construct the A/B/AB-twisted Chern-Simons sigma models, leaving the other
twistings for a future work.

3.2 A-model

We begin with the Euclidean version of the Lagrangian of the linear-model,
£ = ~iLes(A) +wap (¢ DaiDaf — iy put)
Fibun €O TG Frang (1) (") (1) (39)
IRmn€ "€ jaﬁjlg('g 19/ mnp H B ) () - .

This Euclidean Lagrangian differs from the Lorentzian one (2.7) by the factor of (—i) for
the Chern-Simons term and an overall sign for the matter terms. Besides, the fermions no
longer satisfy the reality condition, but the Lagrangian depends holomorphically on the
fermions. The supersymmetry transformation rules remain formally the same as in the
Lorentzian theory,

A . &l A . ad .
0qy = "V, OAL =i Vujag s

1
Wi = | P + Shmn (™) a5 (") o | 1 (3.10)
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Twisting. The twisting is done by taking the diagonal subgroup of the Lorentz group
SU(2) g and the SU(2) i part of the R-symmetry group as the new Lorentz group: SU(2),, =
diag[SU(2)g x SU(2)g]. For instance, we make the replacements,

1 foge’

(Vo) = % (iN€oa + X0 (" €)oa) » (17)a® = 73 (3.11)

where o denote the Lorentz indices, while (o, &) denotes two SU(2) R-symmetries indices.
We suppressed the SU(2)’;-triplet components of the parameter 7.
Plugging these into the transformation rules (2.8), we find the following twisted trans-

formation rules:
Ongi = maXt, G AT = —in®(iM)a, oA =iHI®,  Syxi = —Dugin® . (3.12)

where we defined

. r . . 1
()aa = 5 licoaddl + (0" Doaliia) . HE = 5(tm) pag ™). (313)
From the definition, one can show that
(JLn)oz = tZLqu‘Xf s (0™)a = tZLBqé)‘B . (3.14)

Introducing the twisted supercharges by 6,X = [®Qq, X|, we can rewrite (3.12) as
[QOHQ§] = _6045)‘Aa [QQ,AT] = _i(jgb)a’ {Qaa)‘A} = Z.Hé?’ {QC\HXﬁ} = _Dﬂqé‘ (3.15)

Nilpotency. The twisted supercharges (), are nilpotent up to a gauge transformation.
Concretely, the following relations hold,

{Qa, Qs 0] = — (Map) 507, [{Qa.Qp}, AT'] = DAy
[{Qom Q,@}7 )‘A] = _(Aa,@)AB)‘B ) [{Qaa Q5}7 Xﬁl] - _(Aaﬁ)ABX;? ) (3'16)

with the gauge parameter

Ao = UHag (Aap)p = (tm)ABA;nﬁ . (3.17)

m

The fundamental identity kmnt( n Btg) p = 0 is needed to verify (3.16). See appendix A for
details.

Lagrangian and Invariance. The twisted Lagrangian can be divided into two pieces,

L=L1+ Lo, (3.18)
Ly = —iLes(A) + e wapxi Doy (3.19)
Lo = wABeaﬁDqéDqg - inAB)\AD“XlJf + ikmneaﬁ((jl:”)a(j“")g + Ja J5)

1
+Efmnp(ﬂm)ag(ﬂn)ﬁy(up)7a : (3.20)
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The two parts £1 and Lo are Q-invariant separately. The @Q-invariance of £; can be checked
explicitly,

(Qas £4] = =€ Pk (a5 35X, ) FYy + waBE P05 Dy Dlxg 4002 =0, (3.21)

where --- denotes a part which vanishes due to the fundamental identity. Lo is also Q-
invariant because it is (Q-exact in the sense that

{Qar2wan(x;i D*qf —iHZAP)} = €aLs. (3.22)

Mass deformation. For the mass deformed linear model, the A-twisting leads to the
following super-algebra for the scalar super-charges Q,

{Qaa QB} ~ Raﬁ 5 (3.23)

where R,3 denote the generators of SU(2)r; see (2.15). Without nilpotent scalar super-
charges, we cannot define a topological field theory. Note also that (3.23) somewhat re-
sembles, but clearly differs from, the defining relation of equivariant cohomology which
states

Q* ~ k"’ Rag (3.24)

for some parameters k*?. As a side remark, we note that N = 2 super Yang-Mills theory
in four dimensions admit a mass deformation of a different kind if the world-volume is a
Kéhler manifold [28].

Non-linear A-model. We now consider applying the A-twist to the non-linear model
discussed in section 2.2. The twisted transformation rules are as follows,

(8,0)2 = 024, oA = =i (4" )as
SNt = Hin™ =T 500,6)N5, 0xit = (Dug)*na — T 5 (6,0 ) x5, (3.25)

where the definitions of H2, ( Jii')a are appropriately covariantized in terms of the Killing

vectors of the target space,

1 m n -m m
Héé e gkmn(v )A/B(M )a,(% (]M )oz — = AaXﬁ' (3'26)

The main difference from the linear model is the four fermion term inherited from the
physical theory,

. y 1
L1 = —iLcg(A) + P <wABX;‘DVXpB + gQABCDXﬁXEXS)\D> .

The Q-exact part, Lo, becomes a covariantized version of (3.20).

Let us remark on differences from the Rozansky-Witten theory in [13]. Firstly, the
derivatives become gauge covariant, thus the variation of the fermion kinetic term can
cancel the variation of the Chern-Simons term. Secondly, 6,7)\‘4 = 0 in the RW theory,
while 6,7)\A # 0 in (3.25) due to the non-trivial bosonic potential. It suggests that the
variation of A of the curvature term shall be canceled by the variation of the gauge boson
in the fermionic kinetic term. The cancellation has been shown in detail in [15] for a
holomorphic supercharge.

— 14 —



3.3 B-model

Next, we consider a theory only with twisted hyper multiplets. The physical Lagrangian
in the Euclidean signature is

L= —ilcs(A) +wap <€dBD6£DQE - iﬂlﬁ&éﬂ@g)

. 3 “m 1 ~ Y o/~ ~ D\
i€ BTG4 Franp ()5 () (), (3.27)

Twisting. g4 becomes a bosonic spinor in (2;1) representation of su(2)}, ® su(2)r. For
later convenience, we rescale 1/;&4, which is in (2;2), as

(o)l = V2(0o)i - (3.28)

The supersymmetry variations become

Q"] = 58 QAT =~ {Qu (i} = —can(Pi* + BY) . (3:29)

Note that spinor indices of su(2); are implicit. The quantities 5;” and H4 are defined in
the same way as (3.13).

Nilpotency. The twisted supercharges (), are nilpotent up to the equations of motion
of the fermion. The results read

{Qa:Qs}.d" =0, [{Qu:Qs}, A} =0, [{Qa:Qp}, ¢ = €s,&8 + €ardfy » (3.30)

where
&= 5 (P& +2" o + i) 5" Gm)a) - (3.31)

Note that the variation of the Lagrangian with respect to the fermion is, up to a surface
term,

0L = —dwape® (5¢HER . (3.32)

An aspect of (3.30) different from the result of A-model (3.16) is the absence of the
gauge transformation on the right hand side. One can expect it from the symmetry, sine if a
field-dependent gauge transformation parameter exists, it should be in (1;3) representation
of su(2)y @ su(2)r, with conformal dimension 1. A short computation shows that such a
composite field cannot be constructed from the matter fields of the B-model.

Off-shell Supersymmetry Algebra. One can construct an off-shell formalism by in-
troducing an auxiliary field, a bosonic spinor . The off-shell variations are defined as
follows

{Qa, G5} = —eap(PG* +1%), [Qa, 1] = %lﬂfé‘ iy (i )altm) " . (3.33)

The variations of ¢ and AT" are unchanged from (3.30). The variation of the auxiliary field
in (3.33) has been chosen to ensure the nilpotency of @, on 5&4, ie., [{Qa,Qs}, &,4] = 0.
One can indeed check that nilpotency holds off-shell for all fields (G4, A, ¢ (‘;‘, iLA)Z

[{QG7Q,3}7 ] =0. (334)
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Off-shell Lagrangian. The bosonic potential of the on-shell Lagrangian (3.27) can be
rewritten in terms of H4,

1 ~mya (~n ~ rTA 17
Ly = Efmnp(u ) ,B(lu' )ﬁ'y(up)’ya = _WABHAHB . (335)

Given the off-shell supersymmetry algebra, the following replacement of Ly leads to the
off-shell supersymmetric Lagrangian ,

Ly — Ly =wap(—h*hP + 20 AP —2HAHP) . (3.36)
Again, the twisted Lagrangian can be split into two pieces, £ = L1 + Lo,
L1 = —iLcs(AT),
L2 = ~wapDE DY — Lwape PGP + 2ikne (a5~ T0T)
+iwape? D v DS G —wapHA DT % +wap(-H HP + 20" WP —h*hP) | (3.37)
where the covariant derivative Df{ now involves A: rather than A,,.

The @-closed Lagrangian £, is simply the Chern-Simons action, except that the gauge
boson is shifted by a bi-linear product of the boson fields,

1., 4 -
(A+)}T = A+ S, Sy = 3 EBquy“qB ) (3.38)

A similar redefinition of the gauge field has been noticed [14] for the C-twisting of BLG
theory discussed in section 3.1 and even earlier in topological Yang-Mills theories in [26,
27, 38]. The meaning of this shift will be discussed in section 4.

As in the A-model, £ and L4 are separately Q-invariant. Q-invariance of £y is trivial
due to the Q-invariance of A:m,

[Qu, A =0 (3.39)
Lo is Q-exact,
{Quswan (~G(P*d" — " 7)) | = capls . (3.40)

To show that the Lagrangian in (3.37) indeed results from the topological twisting of
the physical Lagrangian (3.27), one needs to use rather nontrivial identity

Femn SN (") 4G D"§® = wap HA PGP . (3.41)
See appendix A for a proof.

Wilson-loop observable. The BRST invariance of A:[m implies that the Wilson-loop
operators W (C') are good observables of the B-model,

W(C) = tr (73 exp 740 A*) : (3.42)

We will see in section 4 that, not coincidentally, the B-twisted N = 4 super Yang-Mills
theory also carries a shifted gauge field and Wilson loop observables.
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Non-linear B-model. In the B-model, the bosonic matter fields become world-volume
spinors. As such, it seems difficult, if not impossible, to generalize the model to non-flat
hyper-Kahler target space. A similar problem arise from the topological Seiberg-Witten
theory [29] in four dimensions, in which the monopole fields are bosonic spinors. In this
case, a generalization to non-flat hyper-Kéhler target space was proven possible [30] by
coupling the hyper-Kéhler structure of the four-dimensional world-volume to that of the
target space. Our B-model does not seem to allow for such a construction.

3.4 AB-model

Finally, we move on to theories containing both hyper and twisted hyper multiplets. In
addition to the linear combination of A and B-model, non-trivial mixing terms arise. The
supersymmetry transformation laws are unchanged from (2.41).

Twisting. We begin with implementing the features of the B-model to the AB-model,
namely, the shift in the gauge field (3.38) and the introduction of auxiliary fields (3.33).
Using the notations introduced in the previous subsections, we can summarize the twisted
supersymmetry variations as follows,

[Qoqué] - _Ea,@)‘Aa {Qaa)‘A} - /LH&47 {QOHXS} - _D:qéa

[Qa, QA] = _%5£a {Qa, Eé} = _eaﬁ(ln‘jA + hA) + kmn(fm)AB(Nn)aﬁqBa
(Qar i) = SPCH+i" (G Ga) () 5a” = () 5 0m)ad” =5 @) s ()¢
[Qar A7 = =i (G + G1a) - (3.43)

Again, the Q-variation of the auxiliary field A is chosen to guarantee the nilpotency on
A

Z', in this case up to a gauge transformation to be discussed next.

Nilpotency. Now we deal with the problem inherited from the A-model; the twisted
super-charges are nilpotent up to a gauge transformation. For (qﬁ?, A, Xﬁ) in the hyper
multiplet, the results in (3.16) still hold, with the gauge parameter Alls n (3.17). Consis-
tently, Q2 acts on the twisted hyper-multiplet (G4, &;‘, BA) as well as the modified gauge
field A;‘m as a gauge transformation by the same gauge parameter,

{Qu:Qs},d" = —(Rap) 50", HQa» Q) ('] = —(Aap)BCT,
[{QONQ,@}vjrA] = _(Aaﬁ)ABj:B7 [{QomQ,@}?Aer] - DJFAZL,B : (3'44)
where
(Aap)s = Al5(Em) s - (3.45)

Lagrangian and Invariance. The Lagrangian still admits the usual splitting, £ =
L1+ Lo. The £1 term is almost the same as in the A-model,

1
Ly = —iehP (kmnAjma,,Aj" 3 frnp A AT AT +¢XﬁDJX§> ., (3.46)
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except for the shift from A™ to A™" we noticed in the B-model. The cubic term of the
shift S™ = A™* — A™ in the Chern-Simons term comes from the bosonic potential ji* in
the physical Lagrangian, while the change in the covariant derivative Dy — D%y has its
origin in the Yukawa term, " p,,. It is straightforward to show that £; is Q-invariant,

(Qas £1] = ="k F}l," (7)a + € 1D Dylas =0, (347)
where ijm = [D,f, D}]™ is the field strength of A;‘m. Lo is Q-exact in the sense that
{Qas S5+ 2i(pn) 7 ™)y — 4 (G + T S} = €aplon (3.48)

where f ; includes the sum of the terms which appeared in the Q-exact parts of the A- and
B-models,

13 = 20an ((GID*aE —iHIND) = GDTG® +20 —h%)) . (3.49)
The other two terms in (3.48) are novel in the AB-model.

3.5 Gauge fixing

Gauge fixing. Let us consider the BRST quantization of the AB-model. The BRST
quantization of A-model has been considered in [15]. In there, it has been noticed that
imposition of a non-trivial variation of the ghost ¢ with respect to the holomorphic super-
charge, Q4 in our notation, can result in a nilpotent scalar charge. We will see that the
same prescription also works for the AB-model. Reduction to the A- or B-models can be
done trivially.

For the quantization, we introduce fermionic ghost and anti-ghost, ¢, ¢, and bosonic
ghost B™. Recall the standard Fadeev-Popov BRST variations for all fields,

0,0] = ~(tn)5aBe™, {QA} = (tn) BN, Qg = (t) BxEe™,
[Qa qA] = _(gm)ABchma {Q> 6(1)44} = (Em)ABéfcm’ [Qa BA] — _(fm)ABﬁcha
Q. A7) = Dy Q") = 2 fmd'®, Q. =B", QB =0

(3.50)

QQ is nilpotent as in the standard BRST quantization. Now, following [15], we impose the
following super-symmetry variations of ghost fields, where QQ = Q4

(@) =—Sul. Q") =0, QB =0, (351)

then Q no longer anti-commutes with . The non-vanishing variation in (3.51) is chosen
in the way that the non-anti commuting part of @) and () can cancel the remnants of Q2
in (Q+ Q)2: For Q = Q + Q , the following holds for all fields

{Q,9}, -]=0. (3.52)

Consider a gauge fixing function f™(A), for instance, f™(A) = 9* A} for the Lorentz
gauge. The gauge-fixing term appears in a Q-exact form,

Lo ={Q,emf"(A)}, (3.53)
thus the total Lagrangian £ = £1 + Lo + Lg . is Q-closed.
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4 Relation to other topological theories

We have carried out the (A- and B-) topological twisting of general N/ = 4 supersymmetric
Chern-Simons gauged sigma models of [3, 4]. The next task is to evaluate the partition
function and correlation functions of the quantum theory, which should provide (hopefully
new) topological invariants of three manifolds.

The computation involves roughly three steps; see, for instance, [31]. First, one should
identify observables, which are elements of )-cohomology. Second, the path integral often
localizes onto the moduli space of @-invariant configurations (“instantons”). Third, per-
turbation theory is used to compute the partition function unless a more powerful tool is
available.

In this section, we point out some interesting connections between our new theories
and previously well studied theories in the literature. We believe that our findings will
serve as a useful guide in taking each of the three step of computation, most of which we
leave for a future work.

For the readers’ convenience, we begin with a brief review of well-known topological
theories in three dimensions and how they are related to each other. Next, we review a
useful fact about (physical) Chern-Simons-matter theories which inspired our main obser-
vation. It is the generalized Higgs mechanism of Mukhi-Papageorgakis (MP) [16] which,
to some extent, transforms Chern-Simons theories to Yang-Mills theories. We will see that
the MP map is compatible with the topological twisting and that some main results of the
previous sections have dual interpretations on the Yang-Mills side.

In the last subsection, we will combine everything and try to obtain some clues as to
what topological invariants our new theories may compute. In particular, we will argue
that the A-model should capture the Casson invariant and speculate on the role of a
complexified gauge group in the B-model.

4.1 Review of old results

There are largely three well-known three dimensional TFTs in the literature; pure Chern-
Simons theory [12], A-twisted N/ = 4 super Yang-Mills theory [32, 33|, and A-twisted
ungauged N = 4 sigma model of Rozansky-Witten [13]. Let us review some features of
these theories relevant for our discussion below.

The A-twisted Yang-Mills theory is known to compute Casson invariant which is,
roughly speaking, a signed sum over flat connections (), = 0). An important fact for our
discussion is that Casson invariant admits an alternative field theory description [32]. It is
a sort of super-BF theory whose Lagrangian is, in a differential form notation,

L=tr(BANFs+xANday) . (4.1)

Here, A is the gauge connection and F4 the curvature. B is a bosonic one-form and
X, ¥ fermionic one-forms, all of which are Lie-algebra-valued. The Yang-Mills and BF
descriptions look very different at first sight, but it was shown [33] that the Yang-Mills
theory can be deformed in a topologically invariant way to the BF theory.
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Rozansky-Witten theory [13] is not a gauge theory. Nevertheless, it is intimately
related to both pure Chern-Simons and Yang-Mills theories.

First, it computes the SU(2) Casson invariant if one chooses the target space to be
the Atiyah-Hitchin space. The physical explanation is that the low energy limit of the
(physical) Yang-Mills theory is a sigma model on the moduli space of vacua. Taking
account of loop and instanton effects, the quantum moduli space of vacua of the SU(2)
super Yang-Mills theory has been shown to be the Atiyah-Hitchin space [35].°

Second, the relation to pure Chern-Simons theory can be seen by comparing the per-
turbation theory of Rozansky-Witten theory to that of Chern-Simons theory. Topological
invariance of amplitudes in perturbation theory is verified by the so-called IHX relation [37].
The essence of the IHX relation for Chern-Simons theory is the Jacobi identity of Lie al-
gebra, while a similar role is played by the Bianchi identity for the Riemann curvature in
Rozansky-Witten theory. With this formal similarity in mind, a detailed comparison of
Feynman diagrams in the two theories reveals certain relations between Chern-Simons and
Casson invariants.

Relatively less known, but equally important for our discussion, is the B-twisted V' = 4
super Yang-Mills theory [38]. We will review some aspects of this theory in the next
subsection.

4.2 MP map: Chern-Simons vs Yang-Mills

We now present the MP map [16] customized to the linear model with U(V) x U(V) gauge
symmetry and bi-fundamental matter fields

Zo,¥% © (N,N),  Z%¥,: (N,N), (4.2)

where o = 1,2 and & = 1,2 denote the R-symmetry indices as before.

In the AV = 2 super-field notation, the scalar fields split into two charged chiral super-
fields Z, = (A, BT). The N = 4 vector multiplets decomposes into vector super-fields Vg
(Vo) combined with and two neutral chiral super-fields @5, ®c.

For simplicity, let us discuss the abelian (Maxwell) case first. The A" = 4 Lagrangian
of the Gaiotto-Witten model in the N/ = 2 notation is

L:/d49 (ATeWBA + Be?VBBY 4+ 2VpY o — [/ d%0 dpdo—\V2BDpA + c.c.D ,(4.3)
where ¥ g ¢ are the field strength super-fields for Vp ¢, defined as
Y= —%eaﬁDaDﬁv. (4.4)
They satisfy the defining relations of a linear superfield
D?% = D*Y =0. (4.5)
The equations of motion for auxiliary superfields Vp and ®p are

e 2VBAAY — ?VBBIB — 3 =0, do =248 . (4.6)

®See [34] for a discussion of the super-BF theory in a manifest A" = 4 language.
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Integrating out the auxiliary fields, we recover the Lagrangian in the main text with

Yukawa-like term and sextic bosonic potential. Instead, we may choose to eliminate the

matter multiplets by solving for e"5,

2 2
—2vs _ Yot V/(Be)? +4|BAP 1. Bet 5+ 2% (4.7)

- 2AT A V= —glog 2ATA ’

and inserting it back into (4.3). Taking account of the chirality of A, AT and the properties
of linear superfields ¥ (4.5), one can obtain the dual vector description of the model,

Laual = /d49 <\ / EQC + 2|(I)0|2 — Yo log |:EC + 4/ EQC + 2|(I)0|2:|) , (4.8)

whose bosonic parts take the form

1 1 1 1
L=——ooo [ “F? 4+ 2(0,0)® + |0.q]* | — —€"PFw, . 4.9

2v/ 9% + 2|q|? (4 e 500" + 0t or T (49)
Here, ¢ and ¢ are the lowest components of ¥¢ and ®¢, and w, is the pull-back of the
Dirac vector potential in the target space (¢, ¢q,q) € R3:

Wy = %(1 — ¢0s 0)0,p. <¢ =rcosf, q= %r sin 06“") . (4.10)
Restoring the dependence of Chern-Simons level k, one can conclude that the Coulomb
branch of (4.9) is the orbifold C?/Zy, the same as the moduli space of the vacua of the
U(1) x U(1) Gaiotto-Witten model.
To complete the MP map, we give a vev to ¢ by setting £ = v? +6%¢. The leading
behavior of (4.8) with respect to 1/v? is

~ L o, 1 1
L= 202 (0%¢)” + 202 (®1e) + O<v2>
1 (1 1< 2
2 z : i \2 .Z—a

with 1/¢g% = 1/2v2. Tt is precisely the A = 4 supersymmetric Maxwell theory.

The same idea can be applied to the U(N) x U(N) theories, but the computations are
more involved. We jump directly to the final identification between the hyper-multiplets
of the Chern-Simons side and the vector-multiplets of the Yang-Mills side,

1r, - -
Aag = 3 [(Za\Ild + eagedB\IIBZB) + (un-bar < bar)] ,
o1 .
o = 3 [Za%'ﬁaZﬁ + (un-bar < bar)} , (4.12)

up to the leading order of 1/v? expansion. The MP map can be understood as a non-abelian
version of the vector-scalar duality in three dimensions.
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Compatibility I. A-twisting. To show that the MP map is compatible with the A-
twisting, we begin by recalling the supersymmetry transformation rules of super Yang-Mills

theory,

58 = 07 P4, 5 A, = Y i

1 L - 1
0haa = P) P Nag 7, pPge - Du® + o Emnp (o™, "] (Tp)f%d (4.13)
The twisting is done by the following substitutions,
. 1 .
(775)3 = —§€sa77a, ()\S)ad = 68(51{)‘0{ + (7“6) saXpo s (414)

which yields the transformation rules for the topological theory,

§d = 770‘7_"&6)\5, 0A, = =" Xpa
A, = ™, o (P ° Sy = [Le pues s p §.70 4
a = Zemnp[ ) ](T )a UEE Xpoo = 5[5%1//) o T Du® - 77 |ng - (4.15)

These results should be compared to the transformation rules of the A-twisted Chern-
Simons theory inherited through the MP map. For scalar fields, we find

. 1 _
0P = ﬁ’aﬁnai (ZsA + €gyAZ7) + (un-bar < bar) = i \s (4.16)
The field ), is written in terms of matter fields of Chern-Simons theory as

1 _
Xpa = E(Za)zu + eaﬁXMZﬁ) + (un-bar < bar) . (4.17)

Applying the BRST transformation rule of A-model, one can obtain

1 o - 1 =
MXpa = 7706 [(z()\xu + XuA) — ZGBV(ZB D, Z+ D, Zg - Zv))

1
+nf <§DH<I>(O(<I>5)>} + (un-bar < bar)

111 >
=3 [§€W)\FM%{B +D,®- 7'5] 03, (4.18)

where we used the Gauss law in the last step. Omne can easily show that the rests of
transformation rules of SYM are also uncovered by the same manner.

Instanton of the A-model. The BRST transformation implies that the supersymmetric

configurations should satisfy
DHZa:DﬂZQZO, Ha:HCv:07 (419)
where

H® = 2,2%Zy — Z,2°7,,  Hy=2'2,72% - 7°Z, 7" . (4.20)

— 22 —



The Gauss law becomes
«F=DZ, 7% - DZ,7% . (4.21)

As first shown in [36], through the MP map, these equations can be transformed into the
familiar instanton equations of the Yang-Mills theory. For instance, the supersymmetric
configurations of A-model implies those of A-model of super Yang-Mills:

DyZo = D, 2% =0 & Gauss law — F,, =0, D,®=0. (4.22)

The F-term equation also translates into

H*=H,=0 — [®7,®"] =0. (4.23)

Furthermore, a half-BPS instanton can be written down concretely. For a solution to keep

12 unbroken, we have to require

D,Z1 =D, Z* =0, Zy=2'=0. (4.24)

They imply that F-term conditions are automatically satisfied and
1 _ _
Gauss law — *F = D@3, &' =32 =0 (@3 = 5(2121 — Z97% 4 - - )) , (4.25)

These are nothing but the equations the half-BPS instanton of A-model SYM should satisfy.

Compatibility II. B-twisting. The A/ = 4 super Yang-Mills theory in three dimensions
also allow for the B-twisting [38]. Concretely,

1

(ns)ad _ 565(1,'702, (As) oo = €sada + (7€) Xpua - (4.26)

After the twisting, one can obtain the following BRST transformation rules:

- . 1 LG
5(I>u - naXuéz ) 0N = §DM(I>M77(54 ) 5Au = ZnaXud s

1

et (g 1
OXpa = 5 <§Fu>\ +D,®) — 3 (@, (I))\]>770'4 (4.27)

Applying the BRST transformation rules of B-model (3.29) together with the MP
map (4.12) gives us again the above transformation rules as expected.

Instanton of the B-model. For the B-twisted super Yang-Mills, the supersymmetric
configurations satisfy

1 1
gFuw + D@y = 5[0 @] =0, DFP, =0, (4.28)

Once we define a twisted complezr gauge field A: by

AP =A,—i®,, (4.29)
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the first equation of (4.28) can be rewritten as
+
Fl =0, (4.30)

Clearly, this modification of the gauge field exactly parallels what we found in section 3.
In particular, as pointed out in [38], the B-twisted super Yang-Mills carries the Wilson line
as a topological observable,

W(C) = tr <7> exp [ 740 dzt (A, — i(I)M)D . 0(A, —i®,) =0. (4.31)

4.3 Discussions

A-model. In subsection 4.1, we mentioned that the A-twisted super Yang-Mills theory
computes Casson invariant. Let us restrict our attention to the simplest gauge group SU(2).
Via the MP map, it corresponds to the SU(2) x SU(2) linear model. Therefore, we suspect
that the latter should also capture the SU(2) Casson invariant. Let us give some further
heuristic arguments supporting this intriguing possibility.

The first step in taking the MP map is to give a constant non-zero vev for the scalar
field in the Chern-Simons sigma model:

Zo = Vallayo, (432)

which leads to (4.11) through (4.6). We use the notation in which the gauge group acts on Z
by Z — UDU . The vev (4.32) makes sense even when the three-manifold and the gauge
bundle have non-trivial topology as long as the two SU(2) bundles share the same topology;
the choice of vev (4.32) further assumes the same trivialization for the two bundles. The
precise value of v, is not important because the R-symmetry and scale invariance relate
any non-zero value of the vev. The vev (4.32) breaks the gauge group into the diagonal
subgroup, under which the matter fields transform in the adjoint representation. Now,
note that the @-closed part of the Lagrangian of the A-model (3.19) reduces precisely to
the super-BF theory (4.1)!6

Assuming that the contribution from the conformal (zero-vev) point does not spoil ev-
erything, our arguments would imply that the A-model offers a new way to understand the
equivalence [33] between super-Yang-Mills and super-BF theories, both of which compute
Casson invariant.

The MP map also gives a hint on how to carry over the relation between Yang-Mills and
Rozansky-Witten theories to the Chern-Simons sigma model context. In showing that the
moduli space of the vacua of the (physical) SU(2) Yang-Mills theory is the Atiyah-Hitchin
space, the correction to the moduli space metric due to instantons is crucial. As we showed
above, the Chern-Simons sigma model shares the same instantons as the Yang-Mills theory.

The argument based on fermion zero mode counting [35] seems to work equally well in the

SThere is another parallel between the two theories. The super-BF theory (4.1) was originally introduced
as a Chern-Simons theory whose gauge group is a super-group [32]. The same interpretation was given to
the A-model in [15].
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Chern-Simons setup, so we find it plausible that in the “off-diagonal” part of the moduli
space of vacua again becomes the Atiyah-Hitchin space.

Perturbation theory may illuminate different aspects of the A-model. A crucial step
in the perturbative analysis is to verify topological invariance by the so-called THX rela-
tion [37]. As emphasized in [15], the A-model is a combination of pure Chern-Simons and
Rozansky-Witten theories. It would be very interesting to figure out how the gauge fields
and matter fields conspire to give a new example of the IHX relation.

B-model. In the B-model, the relation to pure Chern-Simons could be more direct,
since the topological part of the B-model Lagrangian is already a pure Chern-Simons
action, albeit with a modified gauge field; see (3.37) and (3.38). The shift of the gauge
field is purely imaginary and leads to a complex gauge field. Of course, this does not
imply complexification of the underlying gauge symmetry. Perhaps surprisingly, however,
complexified gauge symmetry does play a role in some context.

Marcus [26] studied a twisted D = 4, N’ = 4 super Yang-Mills theory and showed
that the instanton equation is the flat connection condition for the complex gauge field:
FJV = 0. Moreover, he showed that complexified gauge group somehow plays an impor-
tant role in understanding the moduli space of flat connections. An interpretation of this
observation was given by Baulieu [39] who re-interepreted the N' = 4 Yang-Mills theory as
a complexification of the N' = 2 theory.

Whether a similar story holds for our B-model and its Yang-Mills cousin is an open
question. If so, the B-model may even be related to recent developments (see, e.g.,guk and
references therein) in pure Chern-Simons theories with complex gauge groups.

Quantization. Finally, it may be helpful to study Batalin-Vilkovisky (BV) quantization
of the new theories as the BV quantization facilitates comparison between different gauges
which illuminates different aspects of the same theory. The BV quantization of Rozansky-
Witten theory has been done recently [41] following the AKSZ prescription [42].
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A Some details of computations

Notations on spinors. Spinor indices run o = +, —. Indices are raised or lowered by

real antisymmetric matrices €,3 and B satisfying eageﬁ'y =04 .
Yo = eaﬁ¢ﬂa ¢o¢ = Ea6¢ﬁ-
Space-time metric has signature (— + +). The y-matrices (v#){ satisfy the relations
AR AV = 2 V[MWVVP} — Hp. (6012 =1)

The matrices (ey*)*? are real symmetric. Vectors such as z# and 0, are expressed as
bi-spinors

%P = m“(efyu)o‘ﬁ, Oap = —(Y"€) a0
Spinor indices in the standard position will be omitted.

V0 =00, 07 =0, Y70 =v"(1") 0, ete.

Nilpotency of the A-model. Let us consider some details in (3.16).

[{QOHQB}’Q:?] = _Z(Eﬁ’yHaA +€CV’YHBA)

= —i(t"™) B (pm)asdy (A1)
In the second line, we used
eoégq;4 + eﬁ7q§ + ewqé =0. (A.2)
In checking the nilpotency on A4, it is useful to note that
(Qu HET = 5 (") him)asA® = Seast™Voltm)ppala® NP (A3)
In checking nilpotency of A% in the AB-model (3.44), the following relation can be useful

Y s(t)end§ HETP + (0 ) = = (L Fmmal@V sVl + (0 ) ) (A1)

Proof of an identity. Let us denote the left hand side of (3.41) by B. Then

1, - i
B = S8 (tm)apd* (7", 4"} Du”
1.

= 5(™)an(tm)op (@ P7)(G477) + (@9"77) (@ Dud”)) - (A.5)

where we used the following Fierz identity,

(") )y = 20700 — 020 . (A.6)
The second term of (A.5) becomes
1

5 T an(En)on(@3) @ D,a") = ~B = B+ () anlin)n(a® D) a'a”),

while
(™) aB(tm)ep(@© PG5 (G4 G") = Bwap H PG® . (A.7)

Thus (3.41) is proved.
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